An Experimental Study on the Interpretability of Fuzzy Systems

نویسندگان

  • José M. Alonso
  • Luis Magdalena
چکیده

Interpretability is one of the most significant properties of Fuzzy Systems which are widely acknowledged as gray boxes against other Soft Computing techniques such as Neural Networks usually regarded as black boxes. It is essential for applications with high human interaction (decision support systems in medicine, economics, etc). The use of accuracy indices to guide the fuzzy modeling process is broadly extended. In turn, although there have been a few attempts to define Interpretability indices, we are still far away from having a universal index. With the aim of evaluating the most used indices an experimental analysis (in the form of a web poll) was carried out yielding some useful clues to keep in mind regarding Interpretability assessment. Results extracted from the poll show the inherent subjectivity of the measure because we collected a huge diversity of answers. Nevertheless, comparing carefully all the answers, it was possible to find out some interesting user profiles. Keywords— Fuzzy modeling, Interpretability assessment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS

In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...

متن کامل

A Fuzzy Expert System for Diagnosis of Acute Lymphocytic Leukemia in Children

Fuzzy expert systems are one of the most practical intelligent models with the high potential for managing uncertainty associated to the medical diagnosis. In this paper, a fuzzy inference system (FIS) for diagnosing of acute lymphocytic leukemia in children has been introduced. The fuzzy expert system applies Mamdani reasoning model that has high interpretability to explain system results to e...

متن کامل

A Fuzzy Expert System for Diagnosis of Acute Lymphocytic Leukemia in Children

Fuzzy expert systems are one of the most practical intelligent models with the high potential for managing uncertainty associated to the medical diagnosis. In this paper, a fuzzy inference system (FIS) for diagnosing of acute lymphocytic leukemia in children has been introduced. The fuzzy expert system applies Mamdani reasoning model that has high interpretability to explain system results to e...

متن کامل

GENERATING FUZZY RULES FOR PROTEIN CLASSIFICATION

This paper considers the generation of some interpretable fuzzy rules for assigning an amino acid sequence into the appropriate protein superfamily. Since the main objective of this classifier is the interpretability of rules, we have used the distribution of amino acids in the sequences of proteins as features. These features are the occurrence probabilities of six exchange groups in the seque...

متن کامل

Soft Computing Methods based on Fuzzy, Evolutionary and Swarm Intelligence for Analysis of Digital Mammography Images for Diagnosis of Breast Tumors

Soft computing models based on intelligent fuzzy systems have the capability of managing uncertainty in the image based practices of disease. Analysis of the breast tumors and their classification is critical for early diagnosis of breast cancer as a common cancer with a high mortality rate between women all around the world. Soft computing models based on fuzzy and evolutionary algorithms play...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009